Page images
PDF
EPUB

property of the substances, but dissected by the minuteness of their parts. On this account, these phenomena give very important indications of the real structure of light; and at an early period, suggested views which are, in a great measure, just.

Hooke appears to be the first person who made any progress in discovering the laws of the colors of thin plates. In his Micrographia, printed by the Royal Society in 1664, he describes, in a detailed and systematic manner, several phenomena of this kind, which he calls "fantastical colors." He examined them in Muscovy glass or mica, a transparent mineral which is capable of being split into the exceedingly thin films which are requisite for such colors; he noticed them also in the fissures of the same substance, in bubbles blown of water, rosin, gum, glass; in the films on the surface of tempered steel; between two plane pieces of glass; and in other cases. He perceived also,' that the production of each color required a plate of determinate thickness, and he employed this circumstance as one of the grounds of his theory of light.

Newton took up the subject where Hooke had left it; and followed it out with his accustomed skill and clearness, in his Discourse on Light and Colors, communicated to the Royal Society in 1675. He determined, what Hooke had not ascertained, the thickness of the film which was requisite for the production of each color; and in this way explained, in a complete and admirable manner, the colored rings which occur when two lenses are pressed together, and the scale of color which the rings follow; a step of the more consequence, as the same scale occurs in many other optical phenomena.

It is not our business here to state the hypothesis with regard to the properties of light which Newton founded on these facts;-the "fits of easy transmission and reflection." We shall see hereafter that his attempted induction was imperfect; and his endeavor to account, by means of the laws of thin plates, for the colors of natural bodies, is altogether unsatisfactory. But notwithstanding these failures in the speculations on this subject, he did make in it some very important steps; for he clearly ascertained that when the thickness of the plate was about 1-178000th of an inch, or three times, five times, seven times that magnitude, there was a bright color produced; but blackness, when the thickness was exactly intermediate between those magnitudes. He found, also, that the thicknesses which gave red and vio

[blocks in formation]

let' were as fourteen to nine; and the intermediate colors of course corresponded to intermediate thicknesses, and therefore, in his apparatus, consisting of two lenses pressed together, appeared as rings of intermediate sizes. His mode of confirming the rule, by throwing upon this apparatus differently colored homogeneous light, is striking and elegant. "It was very pleasant," he says, "to see the rings gradually swell and contract as the color of the light was changed."

It is not necessary to enter further into the detail of these phenomena, or to notice the rings seen by transmission, and other circumstances. The important step made by Newton in this matter was, the showing that the rays of light, in these experiments, as they pass onwards go periodically through certain cycles of modification, each period occupying nearly the small fraction of an inch mentioned above; and this interval being different for different colors. Although Newton did not correctly disentangle the conditions under which this periodical character is manifestly disclosed, the discovery that, under some circumstances, such a periodical character does exist, was likely to influence, and did influence, materially and beneficially, the subsequent progress of Optics towards a connected theory.

We must now trace this progress; but before we proceed to this task, we will briefly notice a number of optical phenomena which had been collected, and which waited for the touch of sound theory to introduce among them that rule and order which mere observation had sought for in vain.

CHAPTER VIII.

ATTEMPTS TO DISCOVER THE LAWS OF OTHER PHENOMENA.

THE phenomena which result from optical combinations, even of a comparatively simple nature, are extremely complex. The theory which is now known accounts for these results with the most curious exactness, and points out the laws which pervade the apparent confusion; but without this key to the appearances, it was scarcely possible that any rule or order should be detected. The undertaking was of

2 Opticks, p. 184.

ATTEMPTS TO DISCOVER THE LAWS OF OTHER PHENOMENA. 79

the same kind as it would have been, to discover all the inequalities of the moon's motion without the aid of the doctrine of gravity. We will enumerate some of the phenomena which thus employed and perplexed the cultivators of optics.

The fringes of shadows were one of the most curious and noted of such classes of facts. These were first remarked by Grimaldi1 (1665), and referred by him to a property of light which he called Diffraction. When shadows are made in a dark room, by light admitted through a very small hole, these appearances are very conspicuous and beautiful. Hooke, in 1672, communicated similar observations to the Royal Society, as "a new property of light not mentioned by any optical writer before;" by which we see that he had not heard of Grimaldi's experiments. Newton, in his Opticks, treats of the same phenomena, which he ascribes to the inflexion of the rays of light. He asks (Qu. 3), "Are not the rays of light, in passing by the edges and sides of bodies, bent several times backward and forward with a motion like that of an eel? And do not the three fringes of colored light in shadows arise from three such bendings?" It is remarkable that Newton should not have noticed, that it is impossible, in this way, to account for the facts, or even to express their laws; since the light which produces the fringes must, on this theory, be propagated, even after it leaves the neighborhood of the opake body, in curves, and not in straight lines. Accordingly, all who have taken up Newton's notion of inflexion, have inevitably failed in giving anything like an intelligible and coherent character to these phenomena. This is, for example, the case with Mr. (now Lord) Brougham's attempts in the Philosophical Transactions for 1796. The same may be said of other experimenters, as Mairan2 and Du Four, who attempted to explain the facts by supposing an atmosphere about the opake body. Several authors, as Maraldi," and Comparetti, repeated or varied these experiments in different

ways.

5

3

Newton had noticed certain rings of color produced by a glass speculum, which he called "colors of thick plates," and which he attempted to connect with the colors of thin plates. His reasoning is by no means satisfactory; but it was of use, by pointing out this as a case in which his "fits" (the small periods, or cycles in the rays of light, of

1

1 Physico-Mathesis, de Lumine, Coloribus et Iride. Bologna, 1665. 2 Ac. Par. 1738. 3 Mémoires Présentés, vol. v. 4 Ac. Par. 1723. 5 Observationes Optica de Luce Inflexâ et Coloribus. Padua, 1787.

6

which we have spoken) continued to occur for a considerable length of the ray. But other persons, attempting to repeat his experiments, confounded with them extraneous phenomena of other kinds; as the Duc de Chaulnes, who spread muslin before his mirror, and Dr. Herschel, who scattered hair-powder before his. The colors produced by the muslin were those belonging to shadows of gratings, afterwards examined more successfully by Fraunhofer, when in possession of the theory. We may mention here also the colors which appear on finely-striated surfaces, and on mother-of-pearl, feathers, and similar substances. These had been examined by various persons (as Boyle, Mazeas, Lord Brougham), but could still, at this period, be only looked upon as insulated and lawless facts.

CHAPTER IX.

DISCOVERY OF THE LAWS OF PHENOMENA OF DIPOLARIZEd Light.

BES

ESIDES the above-mentioned perplexing cases of colors produced by common light, cases of periodical colors produced by polarized light began to be discovered, and soon became numerous. In August, 1811, M. Arago communicated to the Institute of France an account of colors seen by passing polarized light through mica, and analysing1 it with a prism of Iceland spar. It is remarkable that the light which produced the colors in this case was the light polarized by the sky, a cause of polarization not previously known. The effect which the mica thus produced was termed depolarization;—not a very happy term, since the effect is not the destruction of the polarization, but the combination of a new polarizing influence with the former. The word dipolarization, which has since been proposed, is a much more appropriate expression. Several other curious phenomena of the same kind were observed in quartz, and in flint-glass. M. Arago was not able to reduce these phenomena to laws, but he had a full conviction of their value, and ventures to class them with the great steps in

Ac. Par. 1755.

1 The prism of Iceland spar produces the colors by

7 Phil. Trans. 1807.

separating the transmit

ted rays according to the laws of double refraction. Hence it is said to analyse the light.

this part of optics. "To Bartholin we owe the knowledge of double refraction; to Huyghens, that of the accompanying polarization; to Malus, polarization by reflection; to Arago, depolarization." Sir D. Brewster was at the same time engaged in a similar train of research; and made discoveries of the same nature, which, though not published till some time after those of Arago, were obtained without a knowledge of what had been done by him. Sir D. Brewster's Treatise on New Philosophical Instruments, published in 1813, contains many curious experiments on the "depolarizing" properties of minerals. Both these observers noticed the changes of color which are produced by changes in the position of the ray, and the alternations of color in the two oppositely polarized images; and Sir D. Brewster discovered that, in topaz, the phenomena had a certain reference to lines which he called the neutral and depolarizing axes. M. Biot had endeavored to reduce the phenomena to a law; and had succeeded so far, that he found that in the plates of sulphate of lime, the place of the tint, estimated in Newton's scale (see ante, chap. vii.), was as the square of the sine of the inclination. But the laws of these phenomena became much more obvious when they were observed by Sir D. Brewster with a larger field of view. He found that the colors of topaz, under the circumstances now described, exhibited themselves in the form of elliptical rings, crossed by a black bar, "the most brilliant class of phenomena," as he justly says, "in the whole range of optics." In 1814, also, Wollaston observed the circular rings with a black cross, produced by similar means in calc-spar; and M. Biot, in 1815, made the same observation. The rings in several of these cases were carefully measured by M. Biot and Sir D. Brewster, and a great mass of similar phenomena was discovered. These were added to by various persons, as M. Seebeck, and Sir John Herschel.

Sir D. Brewster, in 1818, discovered a general relation between the crystalline form and the optical properties, which gave an incalculable impulse and a new clearness to these researches. He found that there was a correspondence between the degree of symmetry of the optical phenomena and the crystalline form; those crystals which are uniaxal in the crystallographical sense, are also uniaxal in their optical properties, and give circular rings; those which are of other forms are, generally speaking, biaxal; they give oval and knotted isochromatic lines, with two poles. He also discovered a rule for the tint at each point

VOL. II.-6.

2 Phil. Trans. 1814.

« PreviousContinue »