Page images
PDF
EPUB

rian curve; so that, for the ends of physical philosophy, the solutior was not very incomplete.

7

John Bernoulli, a few years afterwards, solved the problem of vibrating chords on nearly the same principles and suppositions as Taylor; but a little later (in 1747), the next generation of great mathematicians, D'Alembert, Euler, and Daniel Bernoulli, applied the increased powers of analysis to give generality to the mode of treating this question; and especially the calculus of partial differentials, invented for this purpose. But at this epoch, the discussion, so far as it bore on physics, belonged rather to the history of another problem, which comes under our notice hereafter, that of the composition of vibrations; we shall, therefore, defer the further history of the problem of vibrating strings, till we have to consider it in connexion with new experimental facts.

CHAPTER III.

PROBLEM OF THE PROPAGATION OF SOUND.

WE have seen that the ancient philosophers, for the most part, held

that sound was transmitted, as well as produced, by some motion of the air, without defining what kind of motion this was; that some writers, however, applied to it a very happy similitude, the expansive motion of the circular waves produced by throwing a stone into still water; but that notwithstanding, some rejected this mode of conception, as, for instance, Bacon, who ascribed the transmission of sound to certain "spiritual species."

Though it was an obvious thought to ascribe the motion of sound to some motion of air; to conceive what kind of motion could and did produce this effect, must have been a matter of grave perplexity at the time of which we are speaking; and is far from easy to most persons even now. We may judge of the difficulty of forming this conception, when we recollect that John Bernoulli the younger1 declared, that he could not understand Newton's proposition on this subject. The difficulty consists in this; that the movement of the parts of air, in which sound consists, travels along, but that the parts

Op. iii. p. 207.

1 Prize Dis. on Light, 1736.

of air themselves do not so travel. Accordingly Otto Guericke,' the inventor of the air-pump, asks, "How can sound be conveyed by the motion of the air? when we find that it is better conveyed through air that is still, than when there is a wind." We may observe, however, that he was partly misled by finding, as he thought, that a bell could be heard in the vacuum of his air-pump; a result which arose, probably, from some imperfection in his apparatus.

Attempts were made to determine, by experiment, the circumstances of the motion of sound; and especially its velocity. Gassendi3 was one of the first who did this. He employed fire-arms for the purpose, and thus found the velocity to be 1473 Paris feet in a second. Roberval found a velocity so small (560 feet) that it threw uncertainty upon the rest, and affected Newton's reasonings subsequently.* Cassini, Huyghens, Picard, Römer, found a velocity of 1172 Paris feet, which is more accurate than the former. Gassendi had been surprised to find that the velocity with which sounds travel, is the same whether they are loud or gentle.

The explanation of this constant velocity of sound, and of its amount, was one of the problems of which a solution was given in the Great Charter of modern science, Newton's Principia (1687). There, for the first time, were explained the real nature of the motions and mutual action of the parts of the air through which sound is transmitted. It was shown that a body vibrating in an elastic medium, will propagate pulses through the medium; that is, the parts of the medium will move forwards and backwards, and this motion will affect successively those parts which are at a greater and greater distance from the origin of motion. The parts, in going forwards, produce condensation; in returning to their first places, they allow extension; and the play of the elasticities developed by these expansions and contractions, supplies the forces which continue to propagate the motion.

The idea of such a motion as this, is, as we have said, far from easy to apprehend distinctly: but a distinct apprehension of it is a step essential to the physical part of the sciences now under notice; for it is by means of such pulses, or undulations, that not only sound, but light, and probably heat, are propagated. We constantly meet with evidence of the difficulty which men have in conceiving this undulatory motion, and in separating it from a local motion of the medium as a

* De Vac. Spat. p. 138.

4 Newt. Prin. B. ii. P. 50, Schol.

VOL. II.-3.

3 Fischer, Gesch. d. Physik. vol. i. 171.

5 Newt. Prin. B. ii. P. 43.

mass. For instance, it is not easy at first to conceive the waters of a great river flowing constantly down towards the sea, while waves are rolling up the very same part of the stream; and while the great elevation, which makes the tide, is travelling from the sea perhaps with a velocity of fifty miles an hour. The motion of such a wave, or elevation, is distinct from any stream, and is of the nature of undulations in general. The parts of the fluid stir for a short time and for a small distance, so as to accumulate themselves on a neighboring part, and then retire to their former place; and this movement affects the parts in the order of their places. Perhaps if the reader looks at a field of standing corn when gusts of wind are sweeping over it in visible waves, he will have his conception of this matter aided; for he will see that here, where each ear of grain is anchored by its stalk, there can be no permanent local motion of the substance, but only a successive stooping and rising of the separate straws, producing hollows and waves, closer and laxer strips of the crowded ears.

It

Newton had, moreover, to consider the mechanical consequences which such condensations and rarefactions of the elastic medium, air, would produce in the parts of the fluid itself. Employing known laws of the elasticity of air, he showed, in a very remarkable proposition, the law according to which the particles of air might vibrate. We may observe, that in this solution, as in that of the vibrating string already mentioned, a rule was exhibited according to which the particles might oscillate, but not the law to which they must conform. was proved that, by taking the motion of each particle to be perfectly similar to that of a pendulum, the forces, developed by contraction and expansion, were precisely such as the motion required; but it was not shown that no other type of oscillation would give rise to the same accordance of force and motion. Newton's reasoning also gave a determination of the speed of propagation of the pulses: it appeared that sound ought to travel with the velocity which a body would acquire by falling freely through half the height of a homogeneous atmosphere; "the height of a homogeneous atmosphere" being the height which the air must have, in order to produce, at the earth's surface, the actual atmospheric pressure, supposing no diminution of density to take place in ascending. This height is about 29,000 feet; and hence it followed that the velocity was 968 feet. This velocity is really considerably less than that of sound; but at the time of which

• Princ. B. ii. Prop. 48.

we speak, no accurate measure had been established; and Newton persuaded himself, by experiments made in the cloister of Trinity College, his residence, that his calculation was not far from the fact. When, afterwards, more exact experiments showed the velocity to be 1142 English feet, Newton attempted to explain the difference by various considerations, none of which were adequate to the purpose; -as, the dimensions of the solid particles of which the fluid air consists;—or the vapors which are mixed with it. Other writers offered other suggestions; but the true solution of the difficulty was reserved for a period considerably subsequent.

Newton's calculation of the motion of sound, though logically incomplete, was the great step in the solution of the problem; for mathematicians could not but presume that his result was not restricted to the hypothesis on which he had obtained it; and the extension of the solution required only mere ordinary talents. The logical defect of his solution was assailed, as might have been expected. Cranmer (professor at Geneva), in 1741, conceived that he was destroying the conclusiveness of Newton's reasoning, by showing that it applied equally to other modes of oscillation. This, indeed, contradicted the enunciation of the 48th Prop. of the Second Book of the Principia; but it confirmed and extended all the general results of the demonstration; for it left even the velocity of sound unaltered, and thus showed that the velocity did not depend mechanically on the type of the oscillation. But the satisfactory establishment of this physical generalization was to be supplied from the vast generalizations of analysis, which mathematicians were now becoming able to deal with. Accordingly this task was performed by the great master of analytical generalization, Lagrange, in 1759, when, at the age of twenty-three, he and two friends published the first volume of the Turin Memoirs. Euler, as his manner was, at once perceived the merit of the new solution, and pursued the subject on the views thus suggested. Various analytical improvements and extensions were introduced into the solu tion by the two great mathematicians; but none of these at all altered the formula by which the velocity of sound was expressed; and the discrepancy between calculation and observation, about one-sixth of the whole, which had perplexed Newton, remained still unaccounted for. The merit of satisfactorily explaining this discrepancy belongs to Laplace. He was the first to remark' that the common law of the

7 Méc. Cél. t. v. l. xii. p. 96.

changes of elasticity in the air, as dependent on its compression, cannot be applied to those rapid vibrations in which sound consists, since the sudden compression produces a degree of heat which additionally increases the elasticity. The ratio of this increase depended on the experiments by which the relation of heat and air is established. Laplace, in 1816, published the theorem on which the correction. depends. On applying it, the calculated velocity of sound agreed very closely with the best antecedent experiments, and was confirmed by more exact ones instituted for that purpose.

This step completes the solution of the problem of the propagation of sound, as a mathematical induction, obtained from, and verified by, facts. Most of the discussions concerning points of analysis to which the investigations on this subject gave rise, as, for instance, the admissibility of discontinuous functions into the solutions of partial differential equations, belong to the history of pure mathematics. Those which really concern the physical theory of sound may be referred to the problem of the motion of air in tubes, to which we shall soon have to proceed; but we must first speak of another form which the problem of vibrating strings assumed.

It deserves to be noticed that the ultimate result of the study of the undulations of fluids seems to show that the comparison of the motion of air in the diffusion of sound with the motion of circular waves from a centre in water, which is mentioned at the beginning of this chapter, though pertinent in a certain way, is not exact. It appears by Mr. Scott's recent investigations concerning waves," that the circular waves are oscillating waves of the Second order, and are gregarious. The sound-wave seems rather to resemble the great solitary Wave of Translation of the First order, of which we have already spoken in Book vi. chapter vi.

IT

8

CHAPTER IV.

PROBLEM OF DIFFERENT SOUNDS OF THE SAME STRING.

had been observed at an early period of acoustical knowledge, that one string might give several sounds. Mersenne and others

* Ann. Phys. et Chim. t. iii. p. 288. 9 Brit. Ass. Reports for 1844, p. 361.

« PreviousContinue »