Page images
PDF
EPUB

Young's first published statement of the doctrine of transverse vibrations was given in the explanation of the phenomena of dipolarization, of which we shall have to speak in the next Section. But the primary and immense value of this conception, as a step in the progress of the undulatory theory, was the connexion which it established between polarization and double refraction; for it held forth a promise of accounting for polarization, if any conditions could be found which might determine what was the direction of the transverse vibrations. The analysis of these conditions is, in a great measure, the work of Fresnel; a task performed with profound philosophical sagacity and great mathematical skill.

Since the double refraction of uniaxal crystals could be explained by undulations of the form of a spheroid, it was perhaps not difficult to conjecture that the undulations of biaxal crystals would be accounted for by undulations of the form of an ellipsoid, which differs from the spheroid in having its three axes unequal, instead of two only; and consequently has that very relation to the other, in respect of symmetry, which the crystalline and optical phenomena have. Or, again, instead of supposing two different degrees of elasticity in different directions, we may suppose three such different degrees in directions at right angles to each other. This kind of generalization was tolerably obvious to a practised mathematician.

But what shall call into play all these elasticities at once, and produce waves governed by each of them? And what shall explain the different polarization of the rays which these separate waves carry with them? These were difficult questions, to the solution of which mathematical calculation had hitherto been unable to offer any aid.

It was here that the conception of transverse vibrations came in, like a beam of sunlight, to disclose the possibility of a mechanical connexion of all these facts. If transverse vibrations, travelling through a uniform medium, come to a medium not uniform, but constituted so that the elasticity shall be different in different directions, in the manner we have described, what will be the course and condition of the waves in the second medium? Will the effects of such waves agree with the phenomena of doubly-refracted light in biaxal crystals? Here was a problem, striking to the mathematician for its generality and difficulty, and of deep interest to the physical philosopher, because the fate of a great theory depended upon its solution.

The solution, obtained by great mathematical skill, was laid before the French Institute by Fresnel in November, 1821, and was carried

further in two Memoirs presented in 1822. Its import is very curious. The undulations which, coming from a distant centre, fall upon such a medium as we have described, are, it appears from the principles of mechanics, propagated in a manner quite different from anything which had been anticipated. The "surface of the waves" (that is, the surface which would bound undulations diverging from a point), is a very complex, yet symmetrical curve surface; which, in the case of uniaxal crystals, resolves itself into a sphere and a spheroid; but which, in general, forms a continuous double envelope of the central point to which it belongs, intersecting itself, and returning into itself. The directions of the rays are determined by this curve surface in biaxal crystals, as in uniaxal crystals they are determined by the sphere and the spheroid; and the result is, that in biaxal crystals, both rays suffer extraordinary refraction according to determinate laws. And the positions of the planes of polarization of the two rays follow from the same investigation; the plane of polarization in every case being supposed to be that which is perpendicular to the transverse vibrations. Now it appeared that the polarization of the two rays, as determined by Fresnel's theory, would be in directions, not indeed exactly accordant with the law deduced by M. Biot from experiment, but deviating so little from those directions, that there could be small doubt that the empirical formula was wrong, and the theoretical one right.

The theory was further confirmed by an experiment showing that, in a biaxal crystal (topaz), neither of the rays was refracted according to the ordinary law, though it had hitherto been supposed that one of them was so; a natural inaccuracy, since the error was small." Thus this beautiful theory corrected, while it explained, the best of the observations which had previously been made; and offered itself to mathematicians with an almost irresistible power of conviction. The explanation of laws so strange and diverse as those of double refraction and polarization, by the same general and symmetrical theory, could not result from anything but the truth of the theory.

"Long," says Fresnel, 12" before I had conceived this theory, I had convinced myself, by a pure contemplation of the facts, that it was not possible to discover the true explanation of double refraction, without explaining, at the same time, the phenomena of polarization, which always goes along with it; and accordingly, it was after having found

1 An. Ch. xxviii. p. 264. 12 Sur la Double Réf., Mém. Inst. 1826, p. 174.

what mode of vibration constituted polarization, that I caught sight of the mechanical causes of double refraction."

Having thus got possession of the principle of the mechanism of polarization, Fresnel proceeded to apply it to the other cases of polarized light, with a rapidity and sagacity which reminds us of the spirit in which Newton traced out the consequences of the principle of universal gravitation. In the execution of his task, indeed, Fresnel was forced upon several precarious assumptions, which make, even yet, a wide difference between the theory of gravitation and that of light. But the mode in which these were confirmed by experiment, compels us to admire the happy apparent boldness of the calculator.

The subject of polarization by reflection was one of those which seemed most untractable; but, by means of various artifices and conjectures, it was broken up and subdued. Fresnel began with the simplest case, the reflection of light polarized in the plane of reflection; which he solved by means of the laws of collision of elastic bodies. He then took the reflection of light polarized perpendicularly to this plane; and here, adding to the general mechanical principles a hypothetical assumption, that the communication of the resolved motion parallel to the refracting surface, takes place according to the laws of elastic bodies, he obtains his formula. These results were capable of comparison with experiment; and the comparison, when made by M. Arago, confirmed the formula. They accounted, too, for Sir D. Brewster's law concerning the polarizing angle (see Chap. vi.); and this could not but be looked upon as a striking evidence of their having some real foundation. Another artifice which MM. Fresnel and Arago employed, in order to trace the effect of reflection upon common light, was to use a ray polarized in a plane making half a right angle with the plane of reflection; for the quantities of the oppositely13 polarized light in such an incident ray are equal, as they are in common light; but the relative quantities of the oppositely polarized light in the reflected ray are indicated by the new plane of polarization; and thus these relative quantities become known for the case of common light. The results thus obtained were also confirmed by facts; and in this manner, all that was doubtful in the process of Fresnel's reasoning, seemed to be authorized by its application to real cases.

13 It will be recollected all along, that oppositely polarized rays are those which are polarized in two planes perpendicular to each other. See above, chap. vi.

These investigations were published11 in 1821. In succeeding years, Fresnel undertook to extend the application of his formula to a case in which they ceased to have a meaning, or, in the language of mathematicians, became imaginary; namely, to the case of internal reflection at the surface of a transparent body. It may seem strange to those who are not mathematicians, but it is undoubtedly true, that in many cases in which the solution of a problem directs impossible arithmetical or algebraical operations to be performed, these directions may be so interpreted as to point out a true solution of the question. Such an interpretation Fresnel attempted15 in the case of which we now speak; and the result at which he arrived was, that the reflection of light through a rhomb of glass of a certain form (since called Fresnel's rhomb), would produce a polarization of a kind altogether different from those which his theory had previously considered, namely, that kind which we have spoken of as circular polarization. The complete confirmation of this curious and unexpected result by trial, is another of the extraordinary triumphs which have distinguished the history of the theory at every step since the commencement of Fresnel's labors.

But anything further which has been done in this way, may be treated of more properly in relating the verification of the theory. And we have still to speak of the most numerous and varied class of facts to which rival theories of light were applied, and of the establishment of the undulatory doctrine in reference to that department; I mean the phenomena of depolarized, or rather, as I have already said, dipolarized light.

Sect. 5.—Explanation of Dipolarization by the Undulatory Theory.

16

WHEN Arago, in 1811, had discovered the colors produced by polarized light passing through certain crystals, it was natural that attempts should be made to reduce them to theory. M. Biot, animated by the success of Malus in detecting the laws of double refraction, and Young, knowing the resources of his own theory, were the first persons to enter upon this undertaking. M. Biot's theory, though in the end displaced by its rival, is well worth notice in the history of the subject. It was what he called the doctrine of moveable polarization. He conceived that when the molecules of light pass through

14 An. Chim. t. xvii.

15 Bullet. des Sc. Feb. 1823.

16 See chap. ix.

thin crystalline plates, the plane of polarization undergoes an oscillation which carries it backwards and forwards through a certain angle, namely, twice the angle contained between the original plane of polarization and the principal section of the crystal. The intervals which this oscillation occupies are lengths of the path of the ray, very minute, and different for different colors, like Newton's fits of easy transmission; on which model, indeed, the new theory was evidently framed." The colors produced in the phenomena of dipolarization really do depend, in a periodical manner, on the length of the path of the light through the crystal, and a theory such as M. Biot's was capable of being modified, and was modified, so as to include the leading features of the facts as then known; but many of its conditions being founded on special circumstances in the experiments, and not on the real conditions of nature, there were in it several incongruities, as well as the general defect of its being an arbitrary and unconnected hypothesis.

Young's mode of accounting for the brilliant phenomena of dipolarization appeared in the Quarterly Review for 1814. After noticing the discoveries of MM. Arago, Brewster, and Biot, he adds, "We have no doubt that the surprise of these gentlemen will be as great as our own satisfaction in finding that they are perfectly reducible, like other causes of recurrent colors, to the general laws of the interference of light which have been established in this country;" giving a reference to his former statements. The results are then explained by the interference of the ordinary and extraordinary ray. But, as M. Arago properly observes, in his account of this matter, 18 6 It must, however, be added that Dr. Young had not explained either in what circumstances the interference of the rays can take place, nor why we see no colors unless the crystallized plates are exposed to light previously polarized." The explanation of these circumstances depends on the laws of interference of polarized light which MM. Arago and Fresnel established in 1816. They then proved, by direct experiment, that when polarized light was treated so as to bring into view the most marked phenomena of interference, namely, the bands of shadows; pencils of light which have a common origin, and which are polarized in the parallel planes, interfere completely, while those which are

17 See MM. Arago and Biot's Memoirs, Mém. Inst. for 1811; the whole volume for 1812 is a Memoir of M. Biot's (published 1814); also Mém. Inst. for 1817; M. Biot's Mem. read in 1818, published in 1819 and for 1818.

18 Enc. Brit. Supp. art. Polarization.

« PreviousContinue »