Page images
PDF
EPUB

and will be brightest when the crystal marks E and W. The first of these images is polarized in the plane NS passing through the ray, and the second in the plane EW, perpendicular to the other. And these rays are oppositely polarized. It was further found that whether the ray were polarized by reflection from glass, or from water, or by double refraction, the modification of light so produced, or the nature of the polarization, was identical in all these cases;-that the alternatives of ordinary and extraordinary refraction and non-refraction, were the same, by whatever crystal they were tested, or in whatever manner the polarization had been impressed upon the light; in short, that the property, when once acquired, was independent of everything except the sides or poles of the ray; and thus, in 1811, the term "polarization" was introduced.*

This being the state of the subject, it became an obvious question, by what other means, and according to what laws, this property was communicated. It was found that some crystals, instead of giving, by double refraction, two images oppositely polarized, give a single polarized image. This property was discovered in the agate by Sir D. Brewster, and in tourmaline by M. Biot and Dr. Seebeck. The latter mineral became, in consequence, a very convenient part of the apparatus used in such observations. Various peculiarities bearing upon this subject, were detected by different experimenters. It was in a short time discovered, that light might be polarized by refraction, as well as by reflection, at the surface of uncrystallized bodies, as glass; the plane of polarization being perpendicular to the plane of refraction; further, that when a portion of a ray of light was polarized by reflection, a corresponding portion was polarized by transmission, the planes of the two polarizations being at right angles to each other. It was found also that the polarization which was incomplete with a single plate, either by reflection or refraction, might be made more and more complete by increasing the number of plates.

Among an accumulation of phenomena like this, it is our business to inquire what general laws were discovered. To make such discoveries without possessing the general theory of the facts, required no ordinary sagacity and good fortune. Yet several laws were detected at this stage of the subject. Malus, in 1811, obtained the important generalization that, whenever we obtain, by any means, a polarized ray of light, we produce also another ray, polarized in a contrary

Mém. Inst. 1810.

direction; thus when reflection gives a polarized ray, the companionray is refracted polarized oppositely, along with a quantity of unpolarized light. And we must particularly notice Sir D. Brewster's rule for the polarizing angle of different bodies.

Malus had said that the angle of reflection from transparent bodies which most completely polarizes the reflected ray, does not follow any discoverable rule with regard to the order of refractive or dispersive powers of the substances. Yet the rule was in reality very simple. In 1815, Sir D. Brewster stated as the law, which in all cases determines this angle, that "the index of refraction is the tangent of the. angle of polarization." It follows from this, that the polarization takes place when the reflected and refracted rays are at right angles to each other. This simple and elegant rule has been fully confirmed by all subsequent observations, as by those of MM. Biot and Seebeck; and must be considered one of the happiest and most important discoveries of the laws of phenomena in Optics.

The rule for polarization by one reflection being thus discovered, tentative formulæ were proposed by Sir D. Brewster and M. Biot, for the cases in which several reflections or refractions take place. Fresnel also in 1817 and 1818, traced the effect of reflection in modifying the direction of polarization, which Malus had done inaccurately in 1810. But the complexity of the subject made all such attempts extremely precarious, till the theory of the phenomena was understood, a period which now comes under notice. The laws which we have spoken of were important materials for the establishment of the theory; but in the mean time, its progress at first had been more forwarded by some other classes of facts, of a different kind, and of a longer standing notoriety, to which we must now turn our attention.

CHAPTER VII.

DISCOVERY OF THE LAWS OF THE COLOURS OF THIN PLATES.

THE

HE facts which we have now to consider are remarkable, inasmuch as the colours are produced merely by the smallness of dimensions of the bodies employed. The light is not analysed by any peculiar

Mém. Inst. 1810.

6

Phil. Trans. 1815.

property of the substances, but dissected by the minuteness of their parts. On this account, these phenomena give very important indications of the real structure of light; and at an early period, suggested views which are, in a great measure, just.

Hooke appears to be the first person who made any progress in discovering the laws of the colors of thin plates. In his Micrographia, printed by the Royal Society in 1664, he describes, in a detailed and systematic manner, several phenomena of this kind, which he calls "fantastical colors." He examined them in Muscovy glass or mica, a transparent mineral which is capable of being split into the exceedingly thin films which are requisite for such colors; he noticed them also in the fissures of the same substance, in bubbles blown of water, rosin, gum, glass; in the films on the surface of tempered steel; between two plane pieces of glass; and in other cases. He perceived also,' that the production of each color required a plate of determinate thickness, and he employed this circumstance as one of the grounds of his theory of light.

Newton took up the subject where Hooke had left it; and followed it out with his accustomed skill and clearness, in his Discourse on Light and Colors, communicated to the Royal Society in 1675. He determined, what Hooke had not ascertained, the thickness of the film which was requisite for the production of each color; and in this way explained, in a complete and admirable manner, the colored rings which occur when two lenses are pressed together, and the scale of color which the rings follow; a step of the more consequence, as the same scale occurs in many other optical phenomena.

It is not our business here to state the hypothesis with regard to the properties of light which Newton founded on these facts;-the "fits of easy transmission and reflection." We shall see hereafter that his attempted induction was imperfect; and his endeavor to account, by means of the laws of thin plates, for the colors of natural bodies, is altogether unsatisfactory. But notwithstanding these failures in the speculations on this subject, he did make in it some very important steps; for he clearly ascertained that when the thickness of the plate was about 1-178000th of an inch, or three times, five times, seven times that magnitude, there was a bright color produced; but blackness, when the thickness was exactly intermediate between those magnitudes. He found, also, that the thicknesses which gave red and vio

1 Micrographia, p. 53.

let' were as fourteen to nine; and the intermediate colors of course corresponded to intermediate thicknesses, and therefore, in his apparatus, consisting of two lenses pressed together, appeared as rings of intermediate sizes. His mode of confirming the rule, by throwing upon this apparatus differently colored homogeneous light, is striking and elegant. "It was very pleasant," he says, "to see the rings gradually swell and contract as the color of the light was changed."

It is not necessary to enter further into the detail of these phenomena, or to notice the rings seen by transmission, and other circumstances. The important step made by Newton in this matter was, the showing that the rays of light, in these experiments, as they pass onwards go periodically through certain cycles of modification, each period occupying nearly the small fraction of an inch mentioned above; and this interval being different for different colors. Although Newton did not correctly disentangle the conditions under which this periodical character is manifestly disclosed, the discovery that, under some circumstances, such a periodical character does exist, was likely to influence, and did influence, materially and beneficially, the subsequent progress of Optics towards a connected theory.

We must now trace this progress; but before we proceed to this task, we will briefly notice a number of optical phenomena which had been collected, and which waited for the touch of sound theory to introduce among them that rule and order which mere observation had sought for in vain.

CHAPTER VIII.

ATTEMPTS TO DISCOVER THE LAWS OF OTHER PHENOMENA.

THE phenomena which result from optical combinations, even of a comparatively simple nature, are extremely complex. The theory which is now known accounts for these results with the most curious exactness, and points out the laws which pervade the apparent confusion; but without this key to the appearances, it was scarcely possible that any rule or order should be detected. The undertaking was of

[blocks in formation]

ATTEMPTS TO DISCOVER THE LAWS OF OTHER PHENOMENA. 79

the same kind as it would have been, to discover all the inequalities of the moon's motion without the aid of the doctrine of gravity. We will enumerate some of the phenomena which thus employed and perplexed the cultivators of optics.

The fringes of shadows were one of the most curious and noted of such classes of facts. These were first remarked by Grimaldi' (1665), and referred by him to a property of light which he called Diffraction. When shadows are made in a dark room, by light admitted through a very small hole, these appearances are very conspicuous and beautiful. Hooke, in 1672, communicated similar observations to the Royal Society, as "a new property of light not mentioned by any optical writer before;" by which we see that he had not heard of Grimaldi's experiments. Newton, in his Opticks, treats of the same phenomena, which he ascribes to the inflexion of the rays of light. He asks (Qu. 3), "Are not the rays of light, in passing by the edges and sides of bodies, bent several times backward and forward with a motion like that of an cel? And do not the three fringes of colored light in shadows arise from three such bendings?" It is remarkable that Newton should not have noticed, that it is impossible, in this way, to account for the facts, or even to express their laws; since the light which produces the fringes must, on this theory, be propagated, even after it leaves the neighborhood of the opake body, in curves, and not in straight lines. Accordingly, all who have taken up Newton's notion of inflexion, have inevitably failed in giving anything like an intelligible and coherent character to these phenomena. This is, for example, the case with Mr. (now Lord) Brougham's attempts in the Philosophical Transactions for 1796. The same may be said of other experimenters, as Mairan' and Du Four, who attempted to explain the facts by supposing an atmosphere about the opake body. Several authors, as Maraldi, and Comparetti, repeated or varied these experiments in different ways.

Newton had noticed certain rings of color produced by a glass speculum, which he called "colors of thick plates," and which he attempted to connect with the colors of thin plates. His reasoning is by no means satisfactory; but it was of use, by pointing out this as a case in which his "fits" (the small periods, or cycles in the rays of light, of

Mémoires Présentés, vol. v.

1 Physico-Mathesis, de Lumine, Coloribus et Iride. Bologna, 1665. 2 Ac. Par. 1738. 4 Ac. Par. 1723. Observationes Optica de Luce Inflexa et Coloribus. Padua, 1787.

« PreviousContinue »