Page images
PDF
EPUB

mathematician to compare the results of the theory in detail with those of experimental measures. Coulomb undertook both portions of the task. He examined the electricity of portions of bodies by means of a little disk (his tangent plane) which he applied to them and then removed, and which thus acted as a sort of electric taster. His numerical results (the intensity being still measured by the torsionbalance) are the fundamental facts of the theory of the electrical fluid. Without entering into detail, we may observe that he found the electricity to be entirely collected at the surface of conductors (which Beccaria had before shown to be the case), and that he examined and recorded the electric intensity at the surface of globes, cylinders, and other conducting bodies, placed within each other's influence in various ways.

The mathematical calculation of the distribution of two fluids, all the particles of which attract and repel each other according to the above law, was a problem of no ordinary difficulty; as may easily be imagined, when it is recollected that the attraction and repulsion determine the distribution, and the distribution reciprocally determines the attraction and repulsion. The problem was of the same nature as that of the figure of the earth; and its rigorous solution was beyond the powers of the analysis of Coulomb's time. He obtained, however, approximate solutions with much ingenuity; for instance, in a case in which it was obvious that the electric fluid would be most accumulated at and near the equator of a certain sphere, he calculated the action of the sphere on two suppositions: first, that the fluid was all collected precisely at the equator; and next, that it was uniformly diffused over the surface; and he then assumed the actual case to be intermediate between these two. By such artifices he was able to show that the results of his experiments and of his calculations gave an agreement sufficiently near to entitle him to consider the theory as established on a solid basis,

Thus, at this period, mathematics was behind experiment; and a problem was proposed, in which theoretical numerical results were wanted for comparison with observation, but could not be accurately obtained; as was the case in astronomy also, till the time of the approximate solution of the Problem of Three Bodies, and the consequent formation of the Tables of the Moon and Planets on the theory of universal gravitation. After some time, electrical theory was relieved from this reproach, mainly in consequence of the progress which astronomy had occasioned in pure mathematics. About 1801,

there appeared in the Bulletin des Sciences," an exact solution of the problem of the distribution of electric fluid on a spheroid, obtained by M. Biot, by the application of the peculiar methods which Laplace had invented for the problem of the figure of the planets. And in 1811, M. Poisson applied Laplace's artifices to the case of two spheres acting upon one another in contact, a case to which many of Coulomb's experiments were referrible; and the agreement of the results of theory and observation, thus extricated from Coulomb's numbers, obtained above forty years previously, was very striking and convincing." It followed also from Poisson's calculations, that when two electrized spheres are brought near each other, the accumulation of the opposite electricities on their nearest points increases without limit as the spheres approach to contact; so that before the contact takes place, the external resistance will be overcome, and a spark will pass.

Though the relations of non-conductors to electricity, and various other circumstances, leave many facts imperfectly explained by the theory, yet we may venture to say that, as a theory which gives the laws of the phenomena, and which determines the distribution of those elementary forces, on the surface of electrized bodies, from which elementary forces (whether arising from the presence of a fluid or not,) the total effects result, the doctrine of Dufay and Coulomb, as developed in the analysis of Poisson, is securely and permanently established. This part of the subject has been called statical electricity. In the establishment of the theory of this branch of science, we must, I conceive, allow to Dufay more merit than is generally ascribed to him; since he saw clearly, and enunciated in a manner which showed that he duly appreciated their capital character, the two chief principles, the conditions of electrical attraction and repulsion, and the apparent existence of two kinds of electricity. His views of attrac tion are, indeed, partly expressed in terms of the Cartesian hypothesis of vortices, then prevalent in France; but, at the time when he wrote, these forms of speech indicated scarcely anything besides the power of attraction. Franklin's real merit as a discoverer was, that he was one of the first who distinctly conceived the electrical charge as a derangement of equilibrium. The great fame which, in his day, he enjoyed, arose from the clearness and spirit with which he narrated his discoveries; from his dealing with electricity in the imposing form of thunder and lightning; and partly, perhaps, from his character as an

12 No. li.

13 Mém. A. P. 1811.

American and a politician; for he was already, in 1736, engaged in public affairs as clerk to the General Assembly of Pennsylvania, though it was not till a later period of his life that his admirers had the occasion of saying of him

Eripuit cœlis fulmen sceptrumque tyrannis;

Born to control all lawless force, all fierce and baleful sway,
The thunder's bolt, the tyrant's rod, alike he wrenched away.

Æpinus and Coulomb were two of the most eminent physical philosophers of the last century, and labored in the way peculiarly required by that generation; whose office it was to examine the results, in particular subjects, of the general conception of attraction and repulsion, as introduced by Newton. The reasonings of the Newtonian period had, in some measure, anticipated all possible theories resembling the electrical doctrine of Epinus and Coulomb; and, on that account, this doctrine could not be introduced and confirmed in a sudden and striking manner, so as to make a great epoch. Accordingly, Dufay, Symmer, Watson, Franklin, Æpinus and Coulomb, have all a share in the process of induction. With reference to these founders of the theory of electricity, Poisson holds the same place which Laplace holds with reference to Newton.

The reception of the Coulombian theory (so we must call it, for the Epinian theory implies one fluid only,) has hitherto not been so general as might have been reasonably expected from its very beautiful accordance with the facts which it contemplates. This has partly been owing to the extreme abstruseness of the mathematical reasoning which it employs, and which put it out of the reach of most experimenters and writers of works of general circulation. The theory of Epinus was explained by Robison in the Encyclopædia Britannica; the analysis of Poisson has recently been presented to the public in the Encyclopædia Metropolitana, but is of a kind not easily mastered even by most mathematicians. On these accounts probably it is, that in English compilations of science, we find, even to this day, the two theories of one and of two fluids stated as if they were nearly on a par in respect of their experimental evidence. Still we may say that the Coulombian theory is probably assented to by all who have examined it, at least as giving the laws of phenomena; and I have not heard of any denial of it from such a quarter, or of any attempt to show it to be erroneous by detailed and measured experiments. Mr. Snow Harris

VOL. II.-14.

has recently described some important experiments and measures; but his apparatus was of such a kind that the comparison of the results with the Coulombian theory was not easy; and indeed the mathematical problems which Mr. Harris's combinations offered, require another Poisson for their solution. Still the more obvious results are such as agree with the theory, even in the cases in which their author considered them to be inexplicable. For example, he found that by doubling the quantity of electricity of a conductor, it attracted a body with four times the force; but the body not being insulated, would have its electricity also doubled by induction, and thus the fact was what the theory required.

Though it is thus highly probable that the Coulombian theory of electricity (or the Epinian, which is mathematically equivalent) will stand as a true representation of the law of the elementary actions, we must yet allow that it has not received that complete evidence, by means of experiments and calculations added to those of its founders, which the precedents of other permanent sciences have led us to look for. The experiments of Coulomb, which he used in the establishment of the theory, were not very numerous, and they were limited to a peculiar form of bodies, namely spheres. In order to form the proper sequel to the promulgation of this theory, to give a full confirmation, and to ensure its general reception, we ought to have experiments more numerous and more varied (such as those of Mr. Harris are) shown to agree in all respects with results calculated from the theory. This would, as we have said, be a task of labor and difficulty; but the person who shall execute it will deserve to be considered as one of the real founders of the true doctrine of electricity. To show that the coincidence between theory and observation, which has already been proved for spherical conductors, obtains also for bodies of other forms, will be a step in electricity analogous to what was done in astronomy, when it was shown that the law of gravitation applied to comets as well as to planets.

But although we consider the views of Epinus or Coulomb in a very high degree probable as a formal theory, the question is very different when we come to examine them as a physical theory; that is, when we inquire whether there really is a material electric fluid or fluids.

Question of One or Two Fluids.-In the first place as to the question whether the fluids are one or two;-Coulomb's introduction of

14 Phil. Trans. 1834, p. 2.

the hypothesis of two fluids has been spoken of as a reform of the theory of Epinus; it would probably have been more safe to have called his labors an advance in the calculation, and in the comparison of hypothesis with experiment, than to have used language which implied that the question, between the rival hypotheses of one or two fluids, could be treated as settled. For, in reality, if we assume, as Epinus does, the mutual repulsion of all the particles of matter, in addition to the repulsion of the particles of the electric fluid for one another and their attraction for the particles of matter, the one fluid of Epinus will give exactly the same results as the two fluids of Coulomb. The mathematical formulæ of Coulomb and of Poisson express the conditions of the one case as well as of the other; the interpretation only being somewhat different. The place of the forces of the resinous fluid is supplied by the excess of the forces ascribed to the matter above the forces of the fluid, in the parts where the electric fluid is deficient.

The obvious argument against this hypothesis is, that we ascribe to the particles of matter a mutual repulsion, in addition to the mutual attraction of universal gravitation, and that this appears incongruous. Accordingly, Epinus says, that when he was first driven to this proposition it horrified him." But we may answer it in this way very satisfactorily :—If we suppose the mutual repulsion of matter to be somewhat less than the mutual attraction of matter and electric fluid, it will follow, as a consequence of the hypothesis, that besides all obvious electrical action, the particles of matter would attract each other with forces varying inversely as the square of the distance. Thus gravitation itself becomes an electrical phenomenon, arising from the residual excess of attraction over repulsion; and the fact which is urged against the hypothesis becomes a confirmation of it. By this consideration the prerogative of simplicity passes over to the side of the hypothesis of one fluid; and the rival view appears to lose at least all its superiority.

Very recently, M. Mosotti" has calculated the results of the Epinian theory in a far more complete manner than had previously been performed; using Laplace's coefficients, as Poisson had done for the Cou

"Neque diffiteor cum ipsa se mihi offerret . . . me ad ipsam quodammodo exhorruisse. Tentamen Theor. Elect. p. 39.

1836.

Sur les Forces qui régissent la Constitution Intérieure des Corps. Turin.

« PreviousContinue »